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Optimal Routing to Parallel Heterogeneous 
Servers- Small Arrival Rates 

Abstmct-Consider a set of k( 22) heterogeneous and exponential 
servers which operate in parallel. Customers arrive into a single infinite 
capacity buffer according to a Poisson process, and are routed to avail- 
able servers in accordance with some routing policy. We show that for 
arrival rates in some positive interval (0, XO], every routing policy which 
minimizes the long-run expected holding cost is contained in the set of 
routing policies that minimize the expected flow time for a system with 
fixed initial population and no new arrivals. 

I. INTRODUCTION 
N this paper we consider a queueing system which is composed I of an infinite capacity buffer (or queue) attended by k exponen- 

tial servers operating at rates p1 > p2 > . . . > pk .  Customers 
arrive into the system according to a Poisson process with rate 
A, and are served on a first-come first-served basis in accordance 
with a routing policy (to be defined below). Customers in ser- 
vice cannot be preemcted. Throughout, we assume the stability 
condition X < p := c i , , p ; .  

To fix the notation, for all t 2 0, let N ( t )  denote the num- 
ber of customers in the queue at time t ,  and let e(t)  = 
( e l ( t ) ,  ez( t ) ,  . . . ,ek(t)) denote the state of the k servers at time 
t ,  with the understanding that e;( t )  = 1 if server i is busy and 
e;(t)  = 0 otherwise. Clearly, X ( t )  = (N( t ) ,  e(t))  is a natural 
state variable, and we use the notation X = { X ( t ) ,  t 2 0 )  for 
the stochastic process which describes the evolution of the buffer 
content and of the activity level of the servers. The state space of 
X is S = (0 ,  1,.  . .} x (0, l}k and, for every x = ( n ,  e )  in S ,  
we set 1x1 = n + e l  + . . .  + e k .  

A routing policy a is any rule which at every time t 2 0 stip- 
ulates which idle servers to activate; this decision is made on the 
basis of past states { X ( s ) ,  0 5 s 5 t }  and past decisions up to 
time t; the set of all such routing policies is denoted by II. With 
a holding cost accrued at a fixed rate of c > 0 per unit time, the 
long-run average cost associated with any policy a in Il is then 
defined by 

where E; [ .] denotes the expectation with respect to the probabil- 
ity measure induced by the policy a on the process X starting in 
state x. Note that p ( t ) l  = N ( t )  + e l ( t )  + .  . . +ek(t)  is the total 
number of customers in the system at time t .  A routing policy 
a* is said to be average cost optimal if it minimizes ( l ) ,  i.e., if 

for any other policy a. 
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For the exponential system considered here, the optimiza- 
tion problem associated with (1) falls within the purview of 
continuous-time Markov decision processes which are uniformiz- 
able, i.e., which are equivalent to uniformized discrete-time 
Markov decision processes [7]. The reader is referred to [5] for 
details where the same problem with k = 2 is treated. To de- 
fine the discrete-time decision process, consider that at any given 
instant, each server is working either on a real customer, if ac- 
tivated, or on a dummy customer otherwise. Dummy customers 
always return to the queue upon completing service and incur 
no contribution to the cost. Free transitions are associated either 
with arrivals or with service completions at one of the servers of 
a customer-either real or dummy. These free transitions occur 
according to a Poisson process of rate X + p .  A (free) transi- 
tion due to an arrival occurs with probability h/(X + p ) ,  whereas 
a transition due to a service completion at server i occurs with 
probability p; / (X + p ) .  If in state x before a transition, the pro- 
cess will jump after this transition to a state which depends on 
the current state x and on the action taken under the policy a in 
use. The cost function for using policy a which corresponds to 
(1) is then given by 

where X ( m )  now denotes the state sampled at the mth transition. 
We also need the total 0-discounted cost (0 < 0 < 1) associated 
with the policy a, which is defined by 

v B , ( x ) : = E ;  COmclX(m)l , x ES.  (4) KO 1 
A routing policy which is optimal for the 0-discounted problem 
associated with (4) is called a 0-optimal policy. 

Since the cost function is linear in the state variable and the 
total number of customers in the system changes by at most one 
at every transition, it is well known that a 0-optimal policy exists 
and that it can be taken in the class of Markov stationary policies 
[ 151. One of the conclusions of Section I1 is that the same result 
also holds for the long-run average cost criterion (3). Further- 
more, under the ergodicity condition h < p ,  for every stationary 
policy T ,  (3) exists as a limit which is independent of the initial 
state x. 

Here it is convenient to identify a stationary policy a with a 
function a:S --t 2{'*' ' . .k}  in the following way. Assume that a free 
transition- either an arrival or a service completion- occurs that 
would make the state jump to x = (n ,  e) if no action were taken. 
The policy T activates the idle servers that make the state jump 
instantaneously from x to a(x) = (ao(n), al(el); .  . ,ak(ek)), 
where la(x)l = 1x1 and ai(ei) 2 e;, 1 5 i 5 k .  For the problem 
at hand it can be shown that the optimal policy satisfies a(a(x)) = 
a(x) for every state x in S .  It therefore suffices to consider only 
policies with this property, as we do from now on. 

The problem considered here has a fairly recent history. It 
was first studied by Larsen [4] who conjectured that the optimal 
policy would be of threshold type (as explained below). In [l] ,  
Agrawala e? al. studied a version of the problem under the as- 
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sumptions that the system has an initial load of n customers and 
no new customers enter the system, i.e., X = 0. They determined 
a simple policy which minimizes the expected flow time, a cost 
structure which is the natural analog of the cost (1) for X = 0. 
This optimal policy (denoted hereafter by a*) has the following 
simple form [l]. Set 

~1 + . . .+  P j - l  

PJ 
R; := - ( j - l ) ,  l < j < k  (5) 

and define R I  = 0. If there are n customers that remain unpro- 
cessed and server j is the fastest server available (i.e., with the 
largest p j ) ,  then the idle server j is activated-and a customer 
dispatched to it- if and only if n > Rj  . 

The conjecture of Larsen on the threshold form of the optimal 
policy was settled in the affirmative by Lin and Kumar [5] for 
k = 2. Using policy iteration, they showed that under the optimal 
policy, the fast server is always utilized and there is a number 
R(X) (which depends on X) such that the slow server should 
be utilized if and only if the number of customers in the queue 
exceeds R(X). It was also conjectured there that as hL0, R(h) 
increases and converges to the quantity R2 given by (5). In [16] 
Walrand provided simple stochastic coupling arguments to prove 
the optimality of the threshold policy. 

As we review the conjecture made in [5] and the optimality 
results of [l], we are naturally led to entertain the idea that the 
threshold policy T*  defined above should be optimal for small 
enough values of the arrival rate X. It is the very purpose of this 
paper to show in what precise sense this conjecture is indeed 
correct. To that end, we consider the following class of threshold 
policies. Let there be n customers waiting in the queue and let j 
be the fastest idle server. If n > R, , then server j is activated and 
begins service on one of the customers in the queue. If n = R j ,  
then server j may either be activated or not. If n < R j ,  then no 
server is activated. Note that these policies may not coincide with 
a* if one of the threshold values (5) assumes an integer value. 

Our main results, which were already announced in [ 121, are as 
follows. There exists XO > 0 with the property that every optimal 
policy for the system with arrival rate X in (0, XO] is contained in 
this class of simple threshold policies. We also show that every 
such threshold policy is optimal when X = 0, i.e., minimizes 
the expected flow time. As a result, if the thresholds R;  are all 
noninteger, then the optimal policy in the limiting case X = 0 is 
unique and therefore also optimal for every X in [0, XO]. 

This light traffic result is established for an arbitrary k ,  and 
reduces in the case k = 2 to the conjecture of [5 ] .  Independently 
of the authors, Reiman [9] has established the conjecture for k = 
2 by a completely different method of proof. Reiman’s approach 
is based on the light traffic theory developed by Reiman and 
Simon [lo], and uses crucially the fact that only threshold policies 
need to be considered since the optimal policy is known to be of 
threshold type [5]. 

For arbitrary k > 2 and h > 0, it is still open whether the 
optimal policy is of threshold type. Given that it is, we should not 
expect these thresholds to be the ones given by ( 5 ) ,  for the optimal 
thresholds clearly should depend on the arrival rate 1 and on the 
server states e [5]. However, from a practical viewpoint, there 
is value in trying to understand how knowledge of the optimal 
policy in the limiting case could be put to use in deriving good 
policies for an arbitrary value X of the arrival rate. Although this 
problem is still very much open, an asymptotic analysis as in [2], 
[3], [13] might provide a possible starting point for dealing with 
this problem. Using this method, good policies may be obtained 
by minimizing the first few leading terms in the power series (in 
A) of the value function. The limiting case with no arrivals is 
obtained by minimizing the first leading term. 

In the process of deriving this optimality result for small arrival 
rates, we have gained information into the structural form of 
average cost optimal policies. For any arrival rate, a server is 
not activated unless all faster servers are busy, whereas for small 

arrival rates, server i, 1 5 i < k is activated if the queue size 
exceeds a threshold level that depends only on i .  Of interest is also 
the method of proof used here. Unlike the approach in [2], [3] 
which is limited to problems with finite state-space and discounted 
cost, our method deals with an infinite state-space situation under 
the average cost criterion. 

The paper is organized as follows. In Section 11, we use path- 
wise comparisons as in [ 161 to show that the search for an optimal 
policy can be restricted to a finite set of Markov stationary poli- 
cies with certain properties. In Section 111, we establish various 
continuity properties in the arrival rate A,  from which the final 
result is derived. 

11. REDUCTION TO A FINITE SET OF POLICIES 
In this section we use arguments similar to those presented in 

[16] in order to show that there exists a finite set of states S O  with 
the property that for every arrival rate 0 5 h < P ,  the average 
cost optimal policy always activates all servers whenever the state 
lies outside S O .  In particular, this implies that we may restrict 
attention to a finite set of policies, a fact crucial for proving 
various continuity properties. We first show this reduction in the 
context of the 0-discounted cost problem for 0 < PO 5 0 < 1 .  
The analog result for the average cost criterion, and the fact that 
the optimal policy exists and is stationary, is then an immediate 
consequence of [6]. 

The foilowing two lemmas correspond to properties (2) and 
( l ) ,  respectively, of [16, Lemma 3.21, with similar proofs. We 
include the proofs for the sake of completeness, and elaborate on 
some details that were not explained in [ 161. 

To fix the notation, all the proofs in this section are based on 
pathwise comparison arguments between an original state process 
X under a given policy a, and the state process X under another 
policy ii. derived from a. The latter system is referred to as the 
tilde system, and we use a tilde to denote all relevant quantities 
in this tilde system. 

Lemma 2.1: For every 0 < 0 < 1, the 0-optimal policy has 
the property that whenever it activates a server, it activates the 
fastest available one. 

Proof: Let 7~ be any given policy and let X ( 0 )  = x be an 
initial state in which a activates server i 2  and leaves the fastest 
available server i l  idle. We shall show that a can be strictly 
improved. 

Define a policy 3 and a corresponding process % as follows. 
With initial state X ( 0 )  = X ( 0 )  = x, at time t = 0, 77 takes 
the same action as T ,  except that it activates server i 1 in_stead 
of server i 2 .  From then on, the realizations of X and of X are 
coupled by feeding both systems with the same arrival process 
and by assuming that the fitst service time T , ,  at server i l  in 
the tilde system is given by Ti, = ( p i Z / p ; , ) T i 2  (where T ;  is the 
service time of a customer at server J ] .  This coupling is made 
possible by the fact that Ti, being exponentially distributed with 
parameter pi , ,  T; ,  is also exponential with parameter pi ,  . 

After time t = 0, policy ii mimics the actions of policy ?r with 
one exception: with T denoting the first time at which a activates 
server i I ,  if T < Ti, ,  then ii activates server iz at time T instead of 
server i l  . (Observe that in the tilde system, server i 2  is available 
at time T since 7 < Ti, which in turn implies that i 2  has not been 
activated under a until time T ,  and therefore neither under 77. 
Also, 77 is feasible since the instant T and the event (7 < Ti, } can 
be emulated in th_e tilde system. This follows-from the coupling 
between Ti, and Ti, and the inequality Ti, > Ti, . Indeed, as long 
cs the service Ti,  is not over, neither is the service Ti , .  When 
Ti, is over, then Ti, is exactly known.) 

For all realizations in X where the event {T < T i , }  occurs, 
we reach in both systems at-time T a state which is the same 
except for the following. I n X  the customer at server i l  has been 
given some service while in X it has not; the converse is true 
for the customer at server i 2 .  To continue the coupling, observe 
that at time T, the residual service times of these two customers 
which have been given some service are still exponential given 
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that the event {T < T i 2 }  occurs. Hence, X and X are in the 
same state at time T (given that the event {T < Ti,} occurs), and 
therefqre will evolve in the same manner from that time onward, 
i.e., /X(t)I = IX(t)l for all t 2 0. 

For all other realizations with Ti, 5 7 ,  we have IR(t)l = 
IX(t)l-l for Ti, < t < Ti, and IX(t)( = IX(t)l otherwise. Since 
/3 < 1 and the event that one customer leaves under ii before the 
corresponding one leaves under T occurs with positive probabil- 

U 
Hereafter, we may restrict attention to policies which always 

activate the fastest available servers. Another property of the p- 
optimal policies is given by the following lemma. 

Lemma 2.2: For every 0 < p < 1 ,  the P-optimal policy al- 
ways activates the fastest server l .  

Proof: Let X ( 0 )  = x be an initial state such that N(0)  > 0 
and el(0) = 0, and let T be a policy that does not activate server 
1 in that state. We show that T can be strictly improved. 

From Lemma 2.1 we may assume that T does not activate 
any server at time t = 0 (otherwise T would not be optimal 
and we are done). Define a policy ii and a corresponding state 
process X in which X ( 0 )  = X ( 0 )  = x and all arrivals and service 
requirements are coupled with those of the original system. At 
time t 5 0, ii activates server 1 and continues as follows. 

Let T I  be the service time of the customer which is dispatched 
to server 1 in the tilde system, and let T denote the first time at 
which a activates a server (which is necessarily server 1 by virtue 
of Lemma 2.1). For every realization where { T I  2 T}, we define 
.I? to mimic all actions of T in X, except for its fir_st activation 
of server 1 at time 7. For every realization where {TI  < T}, we 
take ii to mimic all actions of T in X forever. 

The policy ii is clearly feasible and we see that for every real- 
ization, lX(t)l 5 IX(t)l for-all t > 0. Furthermore, by coupling 
the realizations, we have p(t)I = IX(t)l - 1 for a period of 7 

units of time. Therefore, every policy T that does not activate 
server 1 whenever it is available can be improved by a policy that 
does so. 0 

Hereafter, we may further restrict attention to policies with 
the additional property that server 1 be kept active whenever 
possible. 

Observe that multiple dispatching is not excluded. However, 
on the basis of Lemma 2.1, we may use the following conven- 
tion. Whenever multiple dispatching takes place, we regard it as 
a sequence of single dispatchings which are performed instanta- 
neously in increasing order. We also agree to consider as feasible 
states all instantaneous states that X undergoes. Thus, for every 
stationary policy, the set A: of states in which server i ,  1 5 i 5 k 
is being activated under a is completely determined by 

A: = {x  = ( n ,  e) E Sin > 0, e, = I 

ity, it follows that ii strictly improves T .  

for 1 5 j <_ i ,  ei = 0 and T ( X )  = ( n  - 1 ,  e + I;)} 

where 1; is a k-tuple whose elements are zero except for the ith 
element which equals 1 .  

The next lemma, roughly speaking, corresponds to properties 
(3) and (4) of [16, Lemma 3.21. However, its proof requires a 
more delicate argument which is based on the uniform bounds 
we now discuss. 

Let 0 < Po < 1 be an arbitrary discount factor and let T; be 
the P-optimal policy. For every server i < k and state x = (0, e )  
with ei = ek = 0, define 

Po I P L 1 (6 )  

~ 

79 1 

For p = 1,  these differences are understood as the limit (when 
N + CO) of the differences between the costs until step N. 

The function # ((0, e)) expresses the difference in the optimal 
discounted cost between a system that starts in state (1, e) and 
activates server k at time t = 0, and a system that activates server 
i. The function @ ((0, e)) expresses the difference in the optimal 
discounted cost between a system that starts in state ( 1 ,  e) and 
activates server k at time t = 0, and a system that starts in state 
(0, e) and follows the optimal policy. The latter is used for its 
simpler structure and for the fact that it bounds the former. 

By a simple pathwise comparison it is easy to verify that 
V$((O, e)) 5 V”,((O, e + 1,))  which immediately implies 

Next, we shall derive a uniform upper bound to @((O,  e)) that 
does not depend on e, A, or 0. From (8), this will also be a 
uniform bound to y f ( ( 0 ,  e ) )  for every i. 

For every initial state X ( 0 )  = (0, e) as above, and every given 
P ,  0 c PO 5 < 1 ,  define a policy 77; and a corresponding pro- 

Again, arrivals and service requirements are coupled in both 
systems and the initial state in the tilde system is taken to be 
X ( 0 )  = (0, e + lk). Let 5 k  be the service requirement of the first 
customer served by server k in the tilde system. The policy 7‘; 
mimicSal1 actions of T; in X as long as possible. For a realization 
where 5 k  is longer than the first time that a; activates server k ,  
77; mimics the actions of al; except for activating server k.  The 
customer dispatched by ai to server k is “marked” by 77; and is 
not served until X ( t )  = (1, e’) for some e’ with le’] < k .  Such an 
event thereafter is referred to as a boundary hitting event. This 
enables i f*  to mimic the actions of a; until the boundary hitting 
instant. Cfbserve that at a boundary hitting- instant, N ( t )  = 0 
and the servers state in X is the same as in X. At that instant 77; 
dispatches the marked customer to the fastest available server and 
causes the state in the tilde system to jump to (0, e’+l,) for some 
j .  The state of the original system at that instant is (0, e’). For a 
realization where 5k is not longer than the first time at which a; 
activates server k ,  Xp’ mimics the actions of a; forever. 

At a boundary hitting epoch, both systems are in similar states 
as at time t = 0, with the difference that server j in the tilde 
system is playing the role of server k.  From then on (under a 
boundary hitting event), 77; mimics T* in a similar manner as 
before (replace the index k by j ] ,  etc. {ince ~ p ’  is assumed to be 
known, it is easy to see that iip’ is feasible in the tilde system. 

Since 77; is not necessarily optimal, we conclude from (7) that 

cess X that mimics 7r; as follows. ,’ 

(9) 

For every initial state X ( 0 )  = (0, e), let 7(e) be the first time 
X ( t )  hits a boundary state (1, e’), with le’( < k ,  and define 

7 = maxE[~(e)]  < 00. (10) 
e 

The finiteness of E[T(~)]  will become apparent in Section 111. 
Noting 

0 L - IX(t)l 5 1, t 2 0 ( 1 1 )  

we are now in a position to bound @((O, e)). 
Let {Tn, n = 0, 1 . . .} (with 70 = 0) be the successive 

boundary hitting epochs in the process X ;  if for some n = 
0, ~ , . . . , X ( T , , )  = X(7,,), then rZn = CO for m > n .  For ev- 
ery boundary hitting epoch 7,,, if X(7,,) # X(T,,), then from (10) 
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and ( l l ) ,  we get 

1 

rrmil - I  1 

The second inequality follows from two facts. The first is that 
( 1 - p k  /( + p))" is an upper-bound on @e probability that after 
n consecutive boundary hittinp, X and X still differ by 1 .  The 
second is that once X ( t )  and x(t) agree at time t ,  they will agree 
forever. 

Note that the bound in ( 1 3 )  is independent of the server index 
i ,  the server state e, the arrival rate X, and the discount factor 0. 

Lemma 2.3: For every 0 < Po IO < 1 and 0 5 X < p ,  there 
exists an integer no and a 0-optimal policy that activates server 
k whenever N ( t )  2 no. 

Proof: Let X(0)  = ( n ,  e) be an initial state such that n > k 
and e k  = 0. Arguing by contradiction, suppose that the 0-optimal 
policy 7r; does not activate server k at that state. We show below 
that if n is large enough, then a; can be improved irrespectively 
o f O < P o  I p  < 1 .  

k t  (Tk be an exponential r.v. with parameter p k  which is inde- 
pendent of everything else in the system. Also, let 7 k  be the first 
time that server k is activated under a;; and 70 be the first time 
that N ( t )  under 7r; equals zero. The r.v.'s 7 k  and TO are integer- 
valued and are measured from time 0 in steps of the process X. 
Note that Tk could be infinite. Define 7 = min { 7 0 , - 7 k }  

Define a policy if; and a corresponding process X that mimics 
7r; as follows. The arrivals and service requirement? are coupled 
in both systems and the tilde system starts in state X ( 0 )  = X(0) .  
At time 0, if; activates server k in addition to all the servers 
that 7r; does activate. One customer in the queue of X that is 
not dispatched at time t = 0 is "marked" and without loss of 
generality is treated differently. That is, if { 7 k  < T O } ,  then it is 
the marked customer who is dispatched by server k under a*. 
Otherwise, the marked customer is dispatched only if it is t ie  
last one in the queue. There is no loss of generality in assuming 
that the marked customer is dispatched to server k in the tilde 
system at time t = 0. Observe that the service time of the marked 
customer in the tilde system has the same distribution as CTk. 
After time t = 0, if; mimics the actions of 7r; with the following 
differences. 

For every realization where { g k  5 T}, +* mimics all 
the actions of 7r; -forever. For every reatzation where 
{U! > . T k ,  7 k  5 TO}, 7r; mimics all the actions of 7r; except for 
activating of server k at time T k .  For every realization where 
{ ' I k  > TO, 70 < T k } ,  if; mimics all the actions of a; until time 
70, and then acts as the optimal policy a* would have acted in X. 
(Note that since at time 70, X(70) # X ~ T O ) ,  if; does not mimic 
the actions of 7r* after TO.) NoLe also that under such realiza- 
tions, ~ ( 7 0 )  = (0, e + l i )  and ~ ( 7 0 )  = (0, e + 1 k )  for some e 

with e,  = e k  = 0. (Here comes in the requirement for a uniform 
bound on $(CO, e)).) 

Under all realizations with { C k  5 T } ,  if; gains at least c times 
the waiting time of the marked customer durlng [Uk , 71. Under 
it11 realizations with {(Tk > T O ,  TO < T k } ,  the difference between 
X and X is at most y on the average [as follows from ( 1 3 ) ] .  Oth- 
erwise, we have realizations with { u k  > 7 k r  7 k  < TO}. Hence, 
the difference between X and X is only due to the fact that the 
marked customer in X was dispatched at time t = 0, while in 
X it was dispatched at time 7 k .  Acthat time, the residual service 
time of the marked customer in X is still exponential with rate 
p k ,  and therefore both sys_tems will evolve in the same way later 
on. Moreover, we have IX(t)l = IX(t)l for 0 < t 5 7 k .  

Thus, for every PO 5 0  5 1 and 0 5 < p k ,  we have 

r 

J 

Next we show that there is an integer no such that $(n, 0) > 
q > 0 for every n 2 no, 0 L: X < p and 0 < PO 5 P L: 1 .  Since 
7 2 1 a s .  and U k  is independent of 7 ,  we conclude from (14) 
that 

where P ,  {.} is the probability induced by the process X under 
7rp* with initial state X ( 0 )  = (n, e). 

Since the queue length is reduced by at most one at every step, 
we get 

P n { U k  > 7 0 )  5 ( 1 - ~ . L  -0. (16) 
x+cL 

Since 00 > 0 and 0 < pk < + p ,  it follows from ( 1 5 )  and (16) 
that there exists some 7 > 0 and an integer no (independent of /3 
and X) such that, 

$(n, P )  > q for every n 2 no, 0 I A < p and PO I P i 1 .  

Therefore, it follows from (14) that for every 0 I < P k  and 
PO L: /3 < 1, if the 0-optimal policy r;f does not activate server 
k whenever N ( t )  L no, then it can be strictly improved, thus 

0 contradicting the optimality of a * . 
From Lemmas 2 . 1 - 2 . 3 ,  it foflows that for every X < p and 

every @-discounted problem with PO I P < 1 ,  we may restrict 
attention to policies that activate all available servers whenever the 
queue length is larger than no +k (irrespective of the state e of the 
servers). Since e assumes only a finite number of values, we have 
shown that there is a stationary P-optimal policy which activates 
all servers at states outside a finite set of states. Hence, for all 
discount factors PO 5 /3 < 1 ,  only a finite number of policies need 
to be considered for optimality. It immediately follows from [6] 
that an average cost optimal policy exists and is one of the policies 
from the finite set above. 

111. THE OPTIMAL DISPATCHING FOR SMALL ARRIVAL RATES 
In the previous section we have concluded that for every 

0 5 X < p ,  attention may be restricted to a finite set of station- 
ary policies when solving the problem under the long-run average 
cost criterion ( 1 ) .  This finite set of policies is denoted by &, and 
consists of the Markov stationary policies under which: i) server 
1 is always kept busy whenever possible, i.e., customers (if avail- 
able) are always dispatched to server 1 ;  and ii) all the servers are 
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activated at states outside a finite set S O  defined by whenever 0 5 X < p ,  so that 

with no as given in Lemma 2.3. 
To facilitate the discussion, we need some additional notation 

as well as several facts regarding the value function of a Markov 
decision process with a long-run average cost criterion. 

< ~. Under every policy a in b, 
the process 

h ~ ( h 7  X )  = C A ( ~ ,  X )  - g,(h) . T A ( ~ ,  x ) ,  x E S .  (26b) 

For every x in S, let Y ,  denote the state to which the process 
Will jump next, given that it is at state x and that no dispatching 
action is taken. Since the distribution of Y ,  is independent of the 
policy in use, we denote by the expectation operator of 
this distribution given that the system is in state x just before this 
“free” transition and that customers arrive at rate X. It follows 
from (24) that for every policy a in &, 

Lemma 3,z: Assume 0 < 
is an ergodic Markov &in and the equalities 

g ,  :=J , (x)  = V , ( x )  

= lim E; ---E.. 1X(m)i , x E S  (18) 
N-n; I ’  N + l m p o  1 h , ( L  x )  +g , (h)  = c . 1x1 + Gx,xth,(X,  a(Y,))l, x E s. 

hold true, with the interpretation that g ,  is the long-run average 
cost incurred by using policy a. 

Proof: Since every policy in I&J activates all the servers 
outside a finite set of states S O ,  it is easy to see that for every 
x = (n, e) not in S O ,  the inequality 

E“[IX(m + 111 - IX(m)l IX(m) = X I  5 ~ < O  (19) 

holds true for each m = 0, 1 , .  . . . The first part of the lemma 
follows from (19) by a generalization of Foster’s criterion [ 8 ] ,  
whereas (18) is now immediate by the mean Ergodic Theorem. 

0 
To proceed, we need several additional quantities which we 

now introduce. Let T denote the first return time (after time 0) 
to the empty state 0 = (0, 0), i.e., 

l + P  

7 := inf {m > 0 : X ( m )  = (0, O)}. (20) 

For every policy a in II, set 

T A ( ~ ,  x) =E:,.[71, x E S (21) 

and 

for all arrival rate h 2 0, with E{,, ,[ .]  denoting the expectation 
operator under policy a when starting in state x given that the 
arrival rate is X. 

Since the instantaneous cost is linear in the state variable, it 
follows from 11 11 that whenever 0 5 X < p ,  the quantities defined 
by (21) and (22) are finite, i.e., for every policy a in IIo, 

T x ( a ,  x )  < zc and Cx(a, x) < x, x E S .  (23) 

If, in analogy with (18), g,(X) denotes the long-run average cost 
incurred by using policy a given that the arrival rate is A, then 
it is well known that 

r r - l  1 

Finally, for every 0 5 h < p ,  we set 

g*(X) := inf g,(h)  = inf g,(h),  
* € U  *En, 

i.e., g*(h)  is the optimal value of the long-run average cost. 
Moreover, we denote by a: any policy in & which is optimal 
for the long-run average cost (of course, interpreted as the ex- 
pected flow time when X = 0), so that g*(X) :=g,; (A). The next 
proposition shows in what sense the quantities defined by (24) 
and (25) characterize optimality. 

Lemma 3.2: Fix h in (0, p ) .  Every average cost optimal pol- 
icy a: in & satisfies the relations 

h,; (h ,X)+g*(X)  = C . ( x I  + ‘ % , x [ h * ; ( X ,  ax’(Yx))1 
= 

’ 1x1 + 2% ~ A . x [ ~ T ; ( ~ ,  a ( Y x ) ) l  

for all x in S .  
Proof: The first equality follows from (27) with 7r = a:. 

To prove the second equality, define the value function for the 
/3-discounted problem by 

P(x, x )  := inf vP,(x, x ) ,  

Observe that for /30 < /3 < 1, this definition becomes 

x E s , t n  

P’(X,X):= inf vP,(x, x), x E S  (28) ,‘Eh 

so that the corresponding optimality equation [14] now takes the 
form 
V(X, x )  = c . 1x1 +/3 min E ~ , , [ V ~ ( X ,  T ( Y , ) ) I ,  x E S .  

,€no 
(29) 

This relation can be rearranged to read 

vB(h, X )  - e )  + ( 1  - p)vo(x,  e )  
= c ’1x1 + P min &A,,[V~(X, T ( Y , ) )  - e)], x E S .  srn, 

Moreover, for every policy T in &, set and 

(30) 
Since 0 < h < p ,  standard arguments [14] now imply that for 
every policy a in &, 

lim [v!(X, x )  - v B , ( x ,  e ) ]  = h , ( ~ ,  x ) ,  x E s (31) 
B T I  
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Since & is finite, it follows from [6] that there exists a se- 
quence Pn l l  with the property that all O,-optimal policies are 
the same. Furthermore, this policy is also average cost optimal. 
Let T: be such a &,-optimal policy, i.e., V@n(h, x) = VBn (A, x) 
for all x in S .  It is plain from ( 3 1 )  that *; 

lim [V@-(X, x) - Vsn(X, e)] = h,;(X, x), x E S .  (32) 
n-cc 

To conclude, we let P go to 1 along the subsequence {On, n = 
0 ,  l , . . . }  in (30). The result now follows upon using ( 3 1 )  and 

0 
We now present several continuity properties which are useful 

in studying the small arrival rate situation. 
Theorem 3.1: For every policy T in & and every state x in 

S ,  the mappings X + g, (1) and X + h, (A, x )  are all continuous 
on the interval [0, pp). 

Before giving a proof of Theorem 3 . 1 ,  we obtain a simple 
and useful consequence of it, that derives from the observation 
Tx(?r, 0) = 1 and C h ( ~ ,  19) = 0 for X = 0. 

(32)  together with the fact that & is finite. 

Corollary 3 .  I: For every policy 7r in & , 

lim g,(X) = 0 and lim h,(X, x) = h,(O, x ) ,  

Proof of Theorem 3.1: It is plain from (26) that the 
conclusion of Theorem 3 .1  will be obtained if the mappings 
h + T ~ ( T ,  x) and X + C ~ ( T ,  x) can be shown to be continu- 
ous for each x in S .  

Fix x in S .  For all arrival rate X 2 0 and n = 0, 1 , .  . . , set 

x E S .  
h -0 h -0 

Th,n(T ,x )  =Ez,,r[1{r<n}T An1 

and 

1 r A n - I  

C h , n ( r r  x) =ET,. [ 1 { 7 < n }  c Ix(m)l . 
m =O 

It is plain from the monotone convergence theorem that 

lim T A , ~ ( ? T ,  x) = Th(.rr, x) and lim C X , ~ ( T ,  x) = Ch(?r, x). 

( 3 3 )  
n-cc n-cc 

Observe that the one-step transition probability matrix Ph( T) that 
governs X under the policy 7r given that the arrival rate is X has 
continuous entries (in A). Moreover, for every n = 0, 1 ,  ‘ ’ . , 
the expressions C ~ , , , ( T ,  x) and T ~ , , , ( T ,  x) are both sums with 
a finite number of terms, each of which is continuous in X 
on [0, CO). Consequently, the mappings X + CX,, , (T,  x )  and 
X + T A , ~ ( T ,  x) are both continuous on [0, CO) for every n = 
0, l , . . .  . It follows from ( 3 3 )  that the mappings X 7 C?(T, x )  
and X + T ~ ( T ,  x) will be continuous on the positive interval 
[0, pk)  if the convergence in ( 3 3 )  is uniform on every closed 
subinterval contained in that interval. 

To obtain this uniform convergence, note from (23) that when- 
ever 0 5 X < p ,  

0 <_TA(T,x)-TA,n(a,x) =E;,,y[1{7>n}TI, n I o ,  1,“. 

(34) 

and 

Now consider a new system where all k servers are serving at 
rate pp under a routing policy 7r’ derived from T as follows. The 
arrivals to the new system are coupled with the arrivals to the 

original one. Furthermore, at every instant the states and service 
requirements of the original system are emulated in the new one. 
Every customer that is dispatched by 7r to server i ,  1 5 i 5 k is 
marked accordingly and his service duration Ti is converted to 
TI = (pi /pp)T;.  In the new system, T’ dispatches to server i the 
same customers as T dispatches to it in the original system, while 
preserving the system service order within each server. However, 
the service requirement is now taken to be TI. Since arrivals and 
service requirements are coupled, the policy T is known and since 
Tf > Ti ,  it is easy to verify that T’ is indeed a feasible policy. 

Since the new system has the same stochastic evolution as 
the original one, we see by a simple pathwise comparison that 
IX(m)( 5 (X’(m)(  for all m = 0, 1,. . . . Therefore, if T /  denotes 
the first return time (after time 0) to the empty state 0 = (0, 0 ) ,  
i.e., 

T’ := inf {m > O : X ’ ( m )  = (0, O ) }  

then T I T‘, and the inequalities 

and 

0 5 C h ( T ,  x) - CA, n ( r ,  x) 

1 [ m=O 

7 1 - 1  

5 E:,. i { 7 , > n } x c .  IX’(m)l , n =o,  I , . . .  (37) 

now follow from (34) and ( 3 5 ) .  The finiteness of these bounds is 
guaranteed whenever X I kpk  [in analogy with ( 2 3 ) ] .  

Next we bound the right-hand side of (36) and (37) by quan- 
tities which do not depend on T .  To do this, observe that since 
?r is a policy in &, in the new system 7r’ always dispatches 
customers to server 1 (which now operates at rate pp),  and oc- 
casionally dispatches customers to other servers (which now also 
operate at rate pp).  Therefore, by a similar pathwise comparison 
as above, we see that IX’(m)l i IX”(m)l for all m = 0, 1 , .  . . 
where { X ” ( m ) ,  m = 0,  1 , .  . .} is the state process obtained by 
operating the auxiliary system as an MIMI1 queue with arrival 
rate and service rate p k .  This amounts to modifying T’ into a 
new policy d’ that shuts off all servers except server 1 (which 
is always kept active since 7r is a policy in no). In that case, 
{IX”(m)l, m = 0,  1 , .  . .} can be interpreted as the queue size 
process of an MIMI1 queue with arrival rate h and service rate 
p k .  Again, With T” denoting the first return time (after time 0) 
to the empty state 0, i.e., T” := inf { m  > 0: X”(m) = (0, O ) } ,  
we have T’ 5 T” and the inequalities 

0 I TX(T, x) - Th,n(T, x) 

( 3 8 )  5 E ~ , , [ l { r t ~ > n } ~ ” ] ,  n = 0, 1, .  . . 

and 
0 I CA(?T, x) - C A , n ( T ,  x) 

r 7’1-1 1 

m =O L 
(39) 

hold true. The right-hand sides of (38 )  and (39) are finite if 
h < p k ,  for in that case 

E{,,[7”1 < CO and E;,x 
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in analogy with (23). Moreover, these right-hand sides do not 
depend on a and are increasing in X. This last fact can be seen 
by splitting a Poisson arrival process whose rate is X + 6 into 
two independent Poissonian arrival streams with rates X and 6, 
respectively. The customers that arrive in the &stream are served 
with a lower preemptive priority. By a similar pathwise compar- 
ison as above, the monotonicity in h is easily verified. 

From the monotone convergence theorem and from the mono- 
tonicity in A, we now conclude that for every 0 < XO < pk ,  

and 

while for every other policy a in &, 

Telescoping (42) and (43) in the usual way we find that 

while for every other policy a in &, r 1 

This shows via (36) and (37) that the convergence in (33) is 
0 

Now, recall that T: is any average cost optimal policy given 
that the arrival rate is X. Consider the accumulation points of 
the family of average cost optimal policies {a:, 0 < X < p }  as 
h approaches zero. A policy a is such an accumulation point 
if there exists a sequence X,lO such that a:" = a for all n = 
0, 1,. . . . Since & is finite, there are only finitely many such 
accumulation points, say a1 , . . . , TJ , each one of them of course 
in &, . Consequently, there exists ho such that 0 < XO < pk, with 
the property that whenever 0 < X < 10, then ah+ = a, for some 

The following theorem shows in what sense optimal policies 
for X = 0 are also average cost optimal for small arrival rates. 

Theorem 3.2: There exists an interval (0, Xo] with 
0 < i o  < pk such that for all in (0, ho], every average cost 
optimal policy a: is also an optimal policy for X = 0. Moreover, 
if the optimal policy a$ for X = 0 is unique, then a: is also 
unique and coincides with a:, 

Proof: Clearly, only the first part needs to be established 
for the second part immediately follows from it. 

Take XO as defined in the remarks preceding the statement of 
the theorem. Fixj ,  1 I j I: J ,  and denote by I ,  the set of points 
in (0, XO) with the property that a, is average cost optimal when 
the arrival rate A is in I , .  From the very definition of I j  we 
conclude that I ,  is nonempty and at least countable. By Lemma 
3.2, whenever X lies in I j ,  we have 

uniform over [0, Ao] and the proof is now complete. 

j .  

+E,",,[h,,(O, x ( m  + 1111, x E s (45) 

for all m =0 ,  l , . . .  . 
It is plain that for every policy a in I&, the growth estimate 

holds for some positive constant K .  This can be seen by compar- 
ing the system under the policy a to an MIMI1 queue with no 
arrival where the exponential server operates at rate pk as was 
done in the proof of Theorem 3.1. 

Recall that server 1 is always active if possible under the policy 
T in &. Consequently, when X = 0, i.e., when there are no 
arrivals into the system, then IX(m)l can only decrease until it 
becomes zero. As a result of these remarks, we conclude that for 
all m =0,  l , . . . ,  

a.s. under P;,., and invoking the bounded convergence theorem, 
we obtain 

since X ( m )  = 0 whenever 7 5 m and therefore h,, (0,  0) = 0. 

readily conclude that 
Letting m go to infinity in (44) and (43,  and using (46), we 

h,,(X, x) +g*(X)  2 c . 1x1 + &,.[h,,(h, ~ ( y . ) ) ] ,  

Letting X l O  in I , ,  we conclude from Corollary 3.1 that 

X E S. in obvious agreement with one's intuition (see (47) below), while 

h,,(O, x )  I E,",, p c  . lX(m) /]  = h,(O, XI, x E S 

for every other policy a in IIo. In other words, the policy a, is 
0 

Our final result complements Theorem 3.2 by focusing on the 
structure of the optimal policies a$ for X = 0. These optimal 
policies are not necessarily unique as we now discuss. 

For any policy a in &,, we readily see that for A = 0, h,(O, x) 
coincides with the flow time for using a when the system starts 
in state x [ l ] ,  i.e., 

h T , ( 0 9  = c  ' IxI + & , X [ h T , ( 0 9  a J ( y X ) ) 1 9  E (40) m =O 

while for every other policy a in &,, 
indeed optimal for X = 0. 

h ~ , ( 0 ~  x )  I ' I x I  + '%x[h,,(oy a ( y . x ) ) l >  E S.  (41) 

Now applying standard arguments we show that (40) and (41) 
imply that a, is optimal for X = 0. From (40) and (41) we readily 
conclude for all m = 0, 1 , .  . . , that 
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Therefore, the value function for the case X = 0 is defined by 

h * ( x )  = min h,(O, x ) ,  x E S 
*En0 

It follows from Theorem 3.1 and Lemma 3.2 that every optimal 
policy 7r; (for X = 0) satisfies the relations 

= c 1x1 + min & , x [ h * ( ~ ( Y x ) ) l  (48) 
*Eno 

as x ranges over S .  
The optimal actions at every state x are either to dispatch a 

customer to the fastest available server, say T ~ ( x ) ,  or not to dis- 
patch a customer to any server, say T O ( X ) .  These choices are de- 
termined by comparing & , x [ h * ( ~ l ( Y , ) ) ]  and &,x[h*(7r~(Yx)) ] .  
When these quantities are equal, both actions are optimal; other- 
wise, only one of them is optimal. From [ l ] ,  it can be verified 
that if R, is an integer, then at every state x where the fastest 
available server is j and the number of customers in the queue 
equals R,, these expected values are equal. In that case, to dis- 
patch a customer to serverj or not to activate any server are both 
optimal in state x. Therefore, when at least one of the thresholds 
is an integer, 7r; is not unique. Otherwise, if the thresholds R, 
are all noninteger, then only one action minimizes the right-hand 
side of (48) and 7r; is therefore unique. 

In other words, the policy 7r; is optimal for X = 0 if and only 
if it is of the following form. Let j be the fastest idle server 
when n customers are waiting in the queue. If n > R,, then one 
customer from the queue is dispatched to serverj. If n = R, , then 
a customer may or may not be dispatched to server j .  If n < R, , 
then no customer is dispatched to any of the idle servers. 

With this information in hand, we now conclude with the fol- 
lowing corollary to Theorem 3.2. 

Corollary 3.2: If the thresholds R, , 1 5 j 5 k, are all nonin- 
teger, then 7r; is unique and is also the unique optimal policy for 
small arrival rates A.  Otherwise, if the thresholds R,, 1 5 j 5 k ,  
assume an integer value, then 7rT is given by any 7r; except for 
states x in which j is the fastest available server and the number 
of customers in the queue equals R ,  . 

Note Added in Proof: The authors wish to thank Dr. R. 
Righter for bringing their attention to her recent paper which 
generalizes the result of Agrawala et al. [ 1 1 .  
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